

HERMETIC SILICON PHOTOTRANSISTOR

DESCRIPTION

The L14G1/L14G2/L14G3 are silicon phototransistors mounted in a narrow angle, TO-18 package.

FEATURES

- Hermetically sealed package
- Narrow reception angle

SEMICONDUCTOR®

L14G1 L14G2 L14G3

Parameter	Symbol	Rating	Unit	
Operating Temperature	T _{OPR}	-65 to +125	°C	
Storage Temperature	T _{STG}	-65 to +150	°C	
Soldering Temperature (Iron) ^(3,4,5 and 6)	T _{SOL-I}	240 for 5 sec	C°	
Soldering Temperature (Flow)(3,4 and 6)	T _{SOL-F}	260 for 10 sec	°C	
Collector to Emitter Breakdown Voltage	V _{CEO}	45	V	
Collector to Base Breakdown Voltage	V _{CBO}	45	V	
Emitter to Base Breakdwon Voltage	V _{EBO}	5	V	
Power Dissipation $(T_A = 25^{\circ}C)^{(1)}$	PD	300	mW	
Power Dissipation (T _C = 25°C) ⁽²⁾	PD	600	mW	

NOTE:

- 1. Derate power dissipation linearly 3.00 mW/°C above 25°C ambient.
- 2. Derate power dissipation linearly 6.00 mW/°C above 25°C case.
- 3. RMA flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron tip 1/16" (1.6mm) minimum from housing.
- 6. As long as leads are not under any stress or spring tension.
- 7. Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
- 8. Figure 1 and figure 2 use light source of tungsten lamp at 2870°K color temperature. A GaAs source of 3.0 mW/cm² is approximately equivalent to a tungsten source, at 2870°K, of 10 mW/cm².

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C) (All measurements made under pulse conditions)								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS		
Collector-Emitter Breakdown	I _C = 10 mA, Ee = 0	BV _{CEO}	45		—	V		
Emitter-Base Breakdown	I _E = 100 μA, Ee = 0	BV _{EBO}	5.0		—	V		
Collector-Base Breakdown	$I_{\rm C} = 100 \ \mu \text{A}, \ \text{Ee} = 0$	BV _{CBO}	45		—	V		
Collector-Emitter Leakage	V _{CE} = 10 V, Ee = 0	I _{CEO}	—		100	nA		
Reception Angle at 1/2 Sensitivity		θ		±10		Degrees		
On-State Collector Current L14G1	$Ee = 0.5 \text{ mW/cm}^2$, $V_{CE} = 5 V^{(7,8)}$	I _{C(ON)}	1.0		_	mA		
On-State Collector Current L14G2	$Ee = 0.5 \text{ mW/cm}^2$, $V_{CE} = 5 \text{ V}^{(7,8)}$	I _{C(ON)}	0.5			mA		
On-State Collector Current L14G3	$Ee = 0.5 \text{ mW/cm}^2$, $V_{CE} = 5 \text{ V}^{(7,8)}$	I _{C(ON)}	2.0			mA		
Turn-On Time	$I_{\rm C}$ = 2 mA, $V_{\rm CC}$ = 10 V, $R_{\rm L}$ =100 Ω	t _{on}		8		μs		
Turn-Off Time	$I_{\rm C}$ = 2 mA, $V_{\rm CC}$ = 10 V, $R_{\rm L}$ =100 Ω	t _{off}		7		μs		
Saturation Voltage	$I_{\rm C} = 1.0 \text{ mA}, \text{ Ee} = 3.0 \text{ mW/cm}^{2(7,8)}$	V _{CE(SAT)}	_		0.40	V		

HERMETIC SILICON PHOTOTRANSISTOR

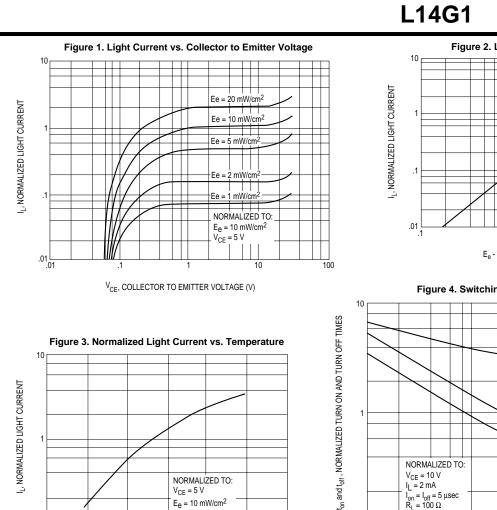
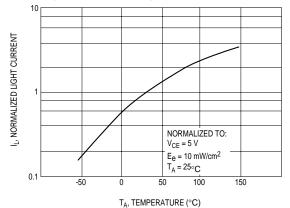
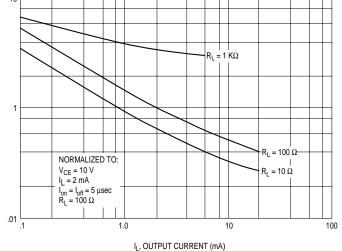



Figure 3. Normalized Light Current vs. Temperature



NORMALIZED TO: V_{CE} = 5 V $E_e = 10 \text{ mW/cm}^2$ 10 100 Ee - TOTAL IRRADIANCE IN mW/cm² Figure 4. Switching Times vs. Output Current

L14G2

Figure 2. Light Current vs. Temperature

L14G3

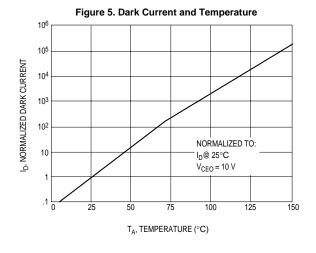
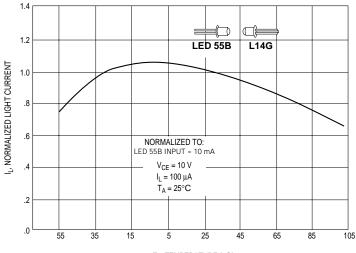



Figure 6. Normalized Light Current vs. Temperature Both Emitter (LED 55B) and Detector (L14G) at Same Temperature

SEMICONDUCTOR®

HERMETIC SILICON PHOTOTRANSISTOR

L14G1 L14G2 L14G3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.